Drucken
Kategorie: About RelayGo

Funktionsprinzip eines RelayGo Relais


Ein mechanisches RelayGo Relais arbeitet nach dem Prinzip des Elektromagneten. Ein Strom in der Erregerspule erzeugt einen magnetischen Fluss durch den ferromagnetischen Kern und einen daran befindlichen, beweglich gelagerten, ebenfalls ferromagnetischen Anker. An einem Luftspalt kommt es zur Krafteinwirkung auf den Anker, wodurch dieser einen oder mehrere Kontakte schaltet. Der Anker wird durch Federkraft in die Ausgangslage zurückversetzt, sobald die Spule nicht mehr erregt ist.



Relais Begriffe


Ein Kontakt wird als Schließer oder Arbeitskontakt bezeichnet, wenn er bei abgefallenem Anker bzw. stromloser Erregerspule offen und bei angezogenem Anker bzw. stromdurchflossener Spule geschlossen ist. Als Ruhekontakt oder Öffner wird ein Kontakt bezeichnet, wenn er in angezogenem Zustand des Relais den Stromkreis unterbricht. Eine Kombination aus Öffner und Schließer wird als Wechsler oder Umschaltkontakt bezeichnet. Ein Relais kann einen oder mehrere solcher Kontakte haben.

Ein Relais heißt „Ruhestromrelais“, wenn es im Ruhezustand vom Strom durchflossen und angezogen ist, beispielsweise zur Überwachung von Netzausfall oder Drahtbruch. Im anderen und überwiegenden Fall, bei dem es im Ruhezustand stromlos ist, wird es als „Arbeitsstromrelais“ bezeichnet.

Im Schaltplan werden Relais grundsätzlich im abgefallenen Zustand gezeichnet, auch wenn sie als Ruhestromrelais arbeiten. Nur in seltenen Ausnahmefällen wird der aktive Zustand dargestellt, der dann besonders gekennzeichnet ist.

 


Verwendung von Relais


Relais sind elektromechanische Bauelemente. Sie werden hauptsächlich für die folgenden Anwendungsfälle eingesetzt:

 


Vor- und Nachteile von Relais


Elektromechanische Relais sind in vielen Anwendungsfällen von elektronischen Schaltern abgelöst worden, die mit Transistoren arbeiten. Relais besitzen gegenüber Transistoren einige Nach-, aber auch Vorteile, unter anderen:


Nachteile:



Vorteile:

 


Relaistypen


Unter den Relais gibt es eine sehr große Anzahl verschiedener Bauformen und Ausführungen. Darüber hinaus können Relais nach verschiedenartigen Gesichtspunkten typisiert werden, beispielsweise nach Anzahl der in stromlosem Zustand möglichen Schaltzustände, nach Bauform, Baugröße, Einsatzgebiet, Art oder Material der Kontakte, Schaltleistung oder Funktionsprinzip. Ein Relais kann daher oft zu verschiedenen Typen gezählt werden.


Die wichtigsten Typen sind:

 

Kleinrelais


Zu dem etwas unklar abgegrenzten Begriff Kleinrelais gehören ein Vielzahl meist im Niederspannungsbereich eingesetzte Relais, die oft zum Einbau auf Leiterplatten vorgesehen sind („Printrelais“). Weitere Beispiele sind DIL-Relais, kammgeführte Relais oder SMD-Miniaturrelais.

 

Schütze

Ein Relais für erheblich größere Leistungen in der Starkstromtechnik wird Schütz genannt. Die Stromstärke und elektrische Spannung im Laststromkreis können um ein Vielfaches größer als in der Spule sein. Schütze besitzen einen Zuganker, für dessen Ansteuerung eine etwas höhere Leistung erforderlich ist, und sie haben in der Regel mehrere gleichartige Schaltkontakte, wie sie zum Schalten von Drehstromverbrauchern benötigt werden. Des Weiteren gibt es sogenannte Hilfsschütze, die ihrerseits zur Steuerung der vorgenannten Hauptschütze dienen.



Halbleiterrelais


Halbleiterrelais (engl. solid state relay, SSR, daher eingedeutscht auch Solid-State-Relais genannt) sind keine eigentlichen Relais. Vielmehr handelt es sich um elektronische Bauelemente, die – auf Grundlage ganz anderer physikalischer Prozesse – den Ein- / Ausschalteffekt realisieren. Halbleiterrelais werden mit Transistoren oder Thyristoren beziehungsweise Triacs realisiert. Sie arbeiten ohne bewegte Teile, sind daher sehr langlebig und für hohe Schalthäufigkeit und ungünstige Umweltbedingungen (wie Umgebungen mit explosiven Gasgemischen) geeignet.

Mit Halbleiterrelais besteht die Möglichkeit, Wechselspannung während des Nulldurchganges zu schalten, womit störende Impulse vermieden werden können. Eine galvanische Trennung zwischen Steuerkreis und Lastkreis wird bei Halbleiterrelais durch im Bauteil integrierte Optokoppler erreicht. Halbleiterrelais haben gegenüber mechanischen Relais höhere Verluste im Laststrompfad und müssen daher oft auf einen Kühlkörper montiert werden. Außerdem gibt es Halbleiterrelais, die im Scheitel der Netzspannung oder sofort beim Ansteuern, also momentan schalten. Scheitelschalter werden eingesetzt zum Schalten von Induktivitäten, die keine oder nur eine geringe Restmagnetisierung haben und damit keine Hysterese aufweisen.

Eine Sonderstellung nehmen so genannte OptoMOS- bzw. PhotoMOS-Relais ein, da sie im Aufbau Optokopplern ähneln: Sie arbeiten steuerungsseitig wie ein Optokoppler mit einer IR-LED und besitzen lastseitig im Unterschied zu den zuvor beschriebenen Halbleiterrelais keine Triacs oder Thyristoren, sondern MOSFETs, mit denen sie Gleich- und Wechselspannungen bei typischerweise eher geringem Strom schalten können. Sie müssen nicht gekühlt werden und besitzen bei geringem Laststrom einen geringeren Spannungsabfall als Halbleiterrelais, zeigen typischerweise jedoch einen höheren „Kontaktwiderstand“ als mechanische Signalrelais. Sie arbeiten prell- und verschleißfrei sowie mit hohen Schaltgeschwindigkeiten (einige Mikrosekunden), die bei Spezialausführungen Schaltfrequenzen bis zu 100 kHz erreichen können.

 

Vorteile von Halbleiterrelais


Nachteile von Halbleiterrelais



Bistabile Relais

Bistabile Relais sind gekennzeichnet durch ihre Eigenschaft, dass sie im stromlosen Zustand zwei verschiedene stabile Schaltzustände einnehmen können. Zu den bistabilen Relais gehören

 


Stromstoßrelais (Stromstoßschalter)

Stromstoßrelais (in der Elektroinstallationstechnik auch als Stromstoßschalter bezeichnet) schalten bei einem Stromimpuls in den jeweils anderen Schaltzustand um und behalten diesen bis zum nächsten Impuls bei. Das Beibehalten des Zustandes wird durch eine mechanische Verriegelung gewährleistet.

 


Haftrelais


Haftrelais, auch als Remanenzrelais bezeichnet, nutzen die Remanenz, um nach Abschalten des Erregerstromes weiterhin im angezogenen Zustand zu verbleiben. Zum Umschalten in den anderen Schaltzustand ist entweder an einer zweiten Wicklung mit umgekehrtem Wicklungssinn eine Spannung gleicher Polarität anzulegen (Doppelspulenrelais), oder bei Haftrelais mit nur einer Wicklung eine Spannung an diese mit entgegengesetzter Polarität.

 


Stützrelais

Stützrelais werden mechanisch in der angesteuerten Position verriegelt. Zum Umschalten in den anderen Schaltzustand ist entweder an einer zweiten Wicklung mit umgekehrtem Wicklungssinn eine Spannung gleicher Polarität anzulegen (Doppelspulenrelais), oder bei Relais mit nur einer Wicklung eine Spannung an diese mit entgegengesetzter Polarität. Stützrelais werden häufig zur Speicherung von Zuständen auch bei Stromausfällen sowie zum Stromsparen bei lange unveränderten Schaltvorgängen eingesetzt.



Doppelspulenrelais bei der Modelleisenbahn

Bei der Modelleisenbahn werden auch Doppelspulrelais eingesetzt. Diese nutzen üblicherweise keine Remanenz und sie werden auch nicht mechanisch verriegelt. Diese Doppelspulenrelais haben oft eine Endabschaltung. Die Endabschaltung verhindert eine Überhitzung von unterdimensionierten Spulen, die sonst bei Dauerbelastung durchbrennen würden. Solche Doppelspulenrelais werden unter anderem zur Steuerung von Signalen verwendet.



Gepolte Relais


Es gibt zwei Arten von Relais, bei denen die Polarität vorgeschrieben ist:

 


Relais in Kraftfahrzeugen


Kfz-Relais sind robust gebaute Relais, die den erhöhten Anforderungen in Kraftfahrzeugen hinsichtlich Stoßfestigkeit und Temperaturbereich standhalten können. Sie arbeiten mit der Bordspannung von 12 V oder 24 V und können höhere Ströme schalten. In der Regel besitzen sie Anschlüsse mit 6,3-mm-Flachsteckern. Häufig enthalten sie im Gehäuse schon Bauelemente (Widerstand, Diode) zum Begrenzen der Gegeninduktionsspannung der Spule.
Sonderfunktionen

Die „Relais“, die als steckbare Baugruppen u. a. im Sicherungskasten von Kraftfahrzeugen verbaut sind, sind häufig Relais mit weiteren Funktionen oder elektronische Baugruppen bzw. kleine Steuergeräte.


Beispiele:


In vielen dieser kleinen Steuergeräte ist zwar tatsächlich noch ein mechanisches Relais enthalten, der Begriff Relais für die gesamte Einheit ist aber eher historisch bedingt. In modernen Autos werden die meisten Funktionen in größeren zentralen Steuergeräten integriert – so wird heute oft das typische Geräusch des Blinkrelais entweder per Lautsprecher oder mit einem Relais erzeugt, das keine Last schaltet.


Wechselstromrelais

Elektromagnetische Relais können nicht ohne weiteres mit Wechselspannung betrieben werden, da das Magnetfeld, das den Anker halten soll, sich dauernd umpolt und daher zwischenzeitlich zu schwach beziehungsweise null ist. Der Anker zieht zwar in der Regel bei Spannungen mit Netzfrequenz an, klappert aber und ein präzises Schalten der Kontakte ist nicht sichergestellt. Folgende Relais können mit Wechselstrom betrieben werden:

 


Drehspulrelais


Das Drehspulrelais ist ein mit einem Dauermagneten polarisiertes Spezialrelais für kleine Leistungen. Der Aufbau entspricht einem Drehspulmesswerk mit einer drehbar gelagerten Spule, außen liegenden Permanentmagneten und einer Rückzugfeder. Statt eines Zeigers vor einer Anzeigeskale werden bei dem Drehspulrelais Kontakte bei bestimmten Drehwinkeln der Drehspule ausgelöst. Prinzipbedingt durch den Dauermagneten können Drehspulrelais nur Gleichgrößen wie Gleichspannung erfassen, weshalb sie in Wechselspannungsanwendungen mit Brückengleichrichtern kombiniert werden.

Anwendung fand das Drehspulrelais in verschiedenen Formen des elektrischen Netzschutzes in elektrischen Energienetzen wie dem Distanzschutzrelais. Bei Überschreiten bestimmter, vorab am Drehspulrelais eingestellter Grenzwerte wurden automatisch entsprechende Warn- und Abschaltkontakte ausgelöst, welche in Umspannwerken die zugeordneten Leistungsschalter auslösen.


Weitere Relaistypen

 

 



Relais im weiteren Sinne


Diese Relais sind zusätzlich mit einer mehr oder weniger aufwändigen Mechanik oder Elektronik versehen.

 

Quelle: Seite „Relais“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 9. Mai 2016, 15:13 UTC. URL: https://de.wikipedia.org/w/index.php?title=Relais&oldid=152302369 (Abgerufen: 13. Juni 2016, 19:15 UTC)

 

 

 

 

 

Our Website uses cookies. With the use of our website you accept the use of cookies. Unsere Webseite verwendet Cookies. Mit der Nutzung unserer Webseite stimmen Sie dem Einsatz von Cookies zu. Las cookies nos permiten ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso que hacemos de las cookies. .